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[1] The large-scale forcing data diagnosed from the European Center for Medium Range
Weather Forecast (ECMWF) model for driving Single-Column Models (SCMs) and Cloud
System Resolving Models (CSRMs) are compared with forcing data derived using the
objective variational analysis constrained by observations collected at the Atmospheric
Radiation Measurement program (ARM) Southern Great Plains (SGP) site. The
comparison covers the following three different synoptic conditions: a strong precipitation
period dominated by subgrid scale processes during the ARM summer 1997 Intensive
Operational Period (IOP), a moderate precipitation period dominated by synoptic scale
processes during the spring 2000 IOP, and a nonprecipitation period during the fall 2000
IOP. In the study we demonstrate that the differences between the two forcing data sets
are considerably large during the strong convective precipitation period, while they are
much less during the moderate and nonprecipitation periods. By analyzing the column-
integrated heat and moisture budgets we show that errors in the ECMWF-model-derived
forcing are closely associated with errors in the model-predicted surface precipitation,
which largely reflect deficiencies of model parameterizations. In SCM tests we show that
SCM simulations are sensitive to the prescribed large-scale forcing data. The simulation
errors are not well correlated between the SCM runs with the two different forcing
data sets for all the three cases. Some important SCM simulated fields, such as surface
precipitation, tend to follow the ECMWF model simulations rather than the observations
when it is forced with the ECMWF forcing, especially for the summer case. INDEX
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1. Introduction

[2] The Single-Column Model (SCM) and Cloud System
Resolving Model (CSRM) are useful tools to test and
evaluate physical parameterizations used in climate models
[Randall et al., 1996]. A successful SCM or CSRM test
requires highly accurate large-scale forcing data, such as the
large-scale advective tendencies of temperature and mois-
ture and the vertical velocity. These forcing data can be
derived from the data collected in major field programs
(e.g., Atmospheric Radiation Measurement program (ARM)
and Tropical Ocean-Global Atmosphere Coupled Ocean-

Atmosphere Response Experiment (TOGA-COARE))
through objective analysis. However, the observations are
often available only over a limited time periods and regions.
Over regions and periods where observations are not
available or data density is low, the large-scale forcing data
are usually obtained from output of operational numerical
weather prediction (NWP) models. A potential use of the
NWP products is to develop long-term continuous forcing
data sets for statistical studies of SCM and CSRM results
that are not possible with limited observations. The NWP
forcing has been used in some recent SCM studies [e.g.,
Iacobellis et al., 2002]. A problem in using the NWP data is
that the forcing data themselves are affected by deficiencies
of the model physical parameterizations used in generating
the data. However, how much model physical parameter-
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izations influence these forcing fields and how the forcing
data affect SCM results have not been discussed previously
in the literature.
[3] In this paper, we attempt to address the above issues

through assessment of the forcing data diagnosed from the
European Center for Medium Range Weather Forecast
(ECMWF) model by using data collected from the ARM
Intensive Operational Periods (IOPs) and processed by the
ARM objective variational analysis [Zhang et al., 2001].
We will also present results from SCM tests to demonstrate
impacts of using NWP forcing on SCM simulations.

2. Large-Scale Forcing

2.1. Observed Forcing

[4] The large-scale forcing data, such as the large-scale
advective tendencies and vertical motion, cannot be ob-
served directly from field measurements. They are derived
from the field observations by using objective analysis
methods. The objective analysis scheme used in this study
is the constrained variational analysis approach developed
by Zhang and Lin [1997]. The variational analysis approach
uses the domain-averaged surface precipitation, latent and
sensible heat fluxes, and radiative fluxes at the surface
(SRF) and the top of the atmosphere (TOA) as the con-
straints, to constrain the atmospheric state variables to
satisfy the conservation of mass, heat, moisture, and mo-
mentum. Therefore the derived data set from this approach
is dynamically and thermodynamically consistent. Zhang et
al. [2001] showed that the constrained variational analysis
could significantly reduce the sensitivity of the final anal-
yzed products to uncertainty in the upper air input obser-
vations. Other studies have also shown that this approach
significantly improves the accuracy of the large-scale forc-
ing, and therefore its derived forcing data sets have been
used in several SCM and CSRM studies [e.g., Ghan et al.,
2000; Xie et al., 2002; Xu et al., 2002]. Nevertheless, it
should be noted that uncertainties still exist in the varia-
tional analysis forcing data because of the inevitable mea-
surement error and arbitrary parameters used in the analysis
procedure. In fact, perfect forcing data never exist in the real
world. In the following discussion we use the objective
variational analysis forcing as the ‘‘truth’’ to evaluate the
forcing data derived from ECMWF model analysis. The
uncertainty of the variational analysis forcing will be briefly
discussed in section 5. Figure 1 displays the variational
analysis domain that is circled by the analysis grids (solid
circles in Figure 1), which includes the five ARM sounding
stations (asterisks in Figure 1) and seven wind profiler
stations (diamonds in Figure 1) near the ARM Southern
Great Plains (SGP) site.

2.2. ECMWF Forcing

[5] ECMWF has been providing ARM with continuous
data sets including the large-scale forcing data, covering all
three ARM field research sites, North Slope of Alaska
(NSA), SGP, and Tropical Western Pacific (TWP), since
1995. The model forcing is specifically extracted from the
ECMWF model runs to force SCMs. These data are
averaged over an area that is close to the ARM variational
analysis domain (see Figure 1). The data set is a composite
of 12 to 36-hour forecasts. The model used to generate the

data set is the ECMWF global spectral model. Detailed
information can be found in the release notice for the SGP
ECMWF data sets (available at www.arm.gov/docs/xds/
static/ecmwf.html). Information about the model physical
parameterizations can be seen in the work of Gregory et al.
[2000].

3. Analysis

[6] In this study, a strong precipitation period from 23
June (2330 UTC) to 29 June (2330 UTC) during the
summer 1997 IOP, a moderate precipitation period from
8 March (1730 UTC) to 18 March (1730 UTC) during the
spring 2000 IOP, and a nonprecipitation period from 27
November (1730 UTC) to 3 December (1730 UTC) during
the fall 2000 IOP are selected to assess the ECMWF-
derived forcing under different weather conditions. All
observations are collected at the ARM SGP site.

3.1. Summer Strong Precipitation Case

[7] The summer strong precipitation case contained two
strong precipitation events on day 2 and day 6 and a weak
precipitation event on day 4 (solid line in Figure 2). Note
that ‘‘day n’’ here refers to the day between n � 1 and n in
the plots. For example, day 2 refers to the day between 1
and 2 in Figure 2. This convention is used throughout the
paper. These precipitation events were associated with
mesoscale convective systems and were dominated by
subgrid scale precipitation [Xie et al. 2002]. It is seen that
the ECMWF model fails to correctly simulate the strong
summertime continental precipitation events (dotted line in
Figure 2). It largely underestimates the observed precipita-
tion and tends to trigger convection earlier than the obser-
vations. Note that strong convective events are generally
associated with large-scale dynamic processes of upward
motion and low-level moisture convergence. The failure to
correctly reproduce the observed precipitation events, which
is likely related to deficiencies of the model cumulus

Figure 1. Boundary locations of the Atmospheric Radia-
tion Measurement program (ARM) Single-Column Model
(SCM) variational analysis domain (solid circles) and the
ECMWF analysis domain (crosses). Asterisks and dia-
monds represent the locations of the balloons and the wind
profilers, respectively.
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parameterization, could have a large impact on the diag-
nosed vertical velocity and advective tendencies as dis-
cussed later.
[8] To assess the ECMWF diagnosed forcings, we first

examine the column-integrated heat and moisture budgets
as follows:
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In the above equations, V
!

is the wind, T is the temperature,
w is the vertical p velocity, r is the air density, q is the
mixing ratio of water vapor, ps is the surface pressure, pt is
the tropopause pressure, ql is the cloud liquid water content,
R is the net downward radiative flux at TOA and SRF, Prec

is precipitation, L is the latent heat of vaporization, Cp is the
heat capacity, SH is the sensible heat flux, and Es is the
surface evaporation. Note that the terms on the right-hand
side of the equations are the constraints used in the
variational analysis. These constraints are not changed in
the analysis.
[9] Table 1 lists the statistics of the observed (values in

parentheses in Table 1) and the ECMWF-model-calculated
column heat and moisture budget components during the
strong summer convective period. The observed values are
obtained from the variational analysis. In Table 1,
‘‘MEAN’’ represents an a time average over the selected
period, ‘‘STD’’ represents standard deviation, ‘‘RMSE’’
denotes root-mean-square (RMS) error, and ‘‘CORR’’
denotes correlation coefficient. ‘‘RMSE/STDO’’ is used to
measure RMSE relative to the variability in the observed
field itself, where ‘‘STDO’’ represents standard deviation in

observations. Since cloud liquid term is very small com-
pared to other terms, it is not shown in Table 1. Note that in
Table 1 we use ‘‘Col_Tadv’’ to represent the column
integral of large-scale advective tendency of temperature
and the adiabatic expansion term, i.e.,
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!
T
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þ w

r
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and ‘‘Col_qadv’’ to represent the column integral of large-
scale advective tendencyofmoisture, i.e.,�L* hrðV!qÞi. The
budget check shows that the column-integrated energy and
moisture budgets are balanced in the constrained variational
analysis. The area-averaged ECMWF model data also
conserve well the column energy and moisture budgets with
a time-averaged budget imbalance of �1.45 W m�2 and
�1.28 W m�2, respectively (not shown in Table 1).
[10] It is seen from Table 1 that significant disagreements

exist in all column budget components between the model
data and the observations. The ECMWF model produces
much stronger column radiative cooling and larger surface
evaporation while it dramatically underestimates the surface
precipitation (LPrec) and sensible heat flux, compared to the
observations. The calculated latent heating associated with
surface precipitation shows a bias of �65% of the observed
mean. The RMS error in this term is significantly large judged
by RMSE/STDO, which is 1.03; that is, it is larger than the
observed temporal variations. Note that any RMS error close
to the temporal variability of the observed field itself is a
serious concern. The ECMWF-model-produced surface pre-
cipitation showsveryweak correlation (0.2)with theobserved
value. It should be noted that these constraint variables used in
the variational analysis are obtained directly from the obser-
vations and are not changed in the variational analysis
procedure. The uncertainty in these column budget variables
can be considered smaller than that in the derived forcing
fields. Therefore thediscrepancies presented above are largely
related to model deficiencies.
[11] Given the large disagreements in the surface fields, it

is not surprising to see the considerable differences in the

Figure 2. Time series of the observed (solid line) and
ECMWF-model-produced (dotted line) surface precipitation
rates (millimeters per day) during the selected strong
precipitation period in the 1997 summer Intensive Opera-
tional Period (IOP).

Table 1. Comparison of ECMWF Model Data to the ARM

Observations for the Column-Integrated Heat and Moisture Budget

Components During the Strong Convective Perioda

MEAN STD RMSE RMSE/STDO CORR

RTOA�RSRF �97.7 (�57.1) 127. 9 (162.1) 63.8 0.39 0.97
LPrec 90.8 (261.8) 163.6 (517.4) 533.3 1.03 0.20
SH 27.8 (40.8) 76.9 (46.6) 42.4 0.91 0.90
L(Es) 146.5 (109.6) 151.3 (111.9) 64.1 0.57 0.96
Cp(@hTi/@t) 13.7 (33.6) 284.1 (247.6) 165.9 0.67 0.81
Col_Tadv �8.8 (�210.7) 254.5 (519.4) 608.7 1.05 0.23
L(@hqi/@t) 11.8 (26.5) 271.1 (225.6) 329.7 1.46 0.11
Col_qadv �42.6(178.6) 355.5 (519.4) 558.6 1.08 0.34

aValues in parentheses are ARM observations. Values given in W m�2.
ECMWF, European Center for Medium Range Weather Forecast; ARM,
Atmospheric Radiation Measurement program; MEAN, time average; STD,
standard deviations; RMSE, root-mean-square errors; STDO, standard
deviation in observations; CORR, correlation coefficient; RTOA, net
downward radiation flux of the top of the atmosphere; RSRF, net downward
radiation flux of the surface; LPrec, surface precipitation; SH, sensible heat
flux; L(Es), latent surface evaporation; Cp @hTi/@t, heat term; Col_Tadv,
column integral of large-scale advective tendency of time; L @hqi/@t,
moisture term; Col_qadv, column integral of large-scale advective tendency
of moisture.
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derived forcing fields (i.e., Col_Tadv and Col_qadv) be-
tween the variational analysis and the ECMWF model. It is
seen that the variational analysis shows very strong advec-
tive and adiabatic cooling and large moisture convergence
during the strong convective period. These values are
consistent with other previous studies [e.g., Hudson, 1971;
Cho and Ogura, 1974; Houze and Rappaport, 1984]. In
contrast, the model exhibits rather weak advective cooling
and weak divergence. The model-derived temporal varia-
tions in these two terms are much weaker than the obser-
vations. Similar to the surface precipitation rates, the
column integrated forcing fields show RMS errors that are
larger than the observed temporal variations. The correla-
tions between these two types of forcing data are fairly
weak (less than 0.35). Note also that the heat and moisture
storage terms Cp*@hTi/@t and L*@hqi/@t show noticeable
differences between the model and the observations, even
though the model-time-averaged temperature and moisture
agree well with the observations with errors of <0.5 K in
temperature and 0.3 g kg�1 in moisture, respectively.

[12] Another noteworthy feature is that the observed
energy budget is dominated by the latent heating associated
with surface precipitation and advective/adiabatic cooling,
and the observed moisture budget is largely balanced by
surface precipitation and moisture convergence, for the
strong convective case. In the model, however, the latent
heating is balanced by the column net radiative cooling; the
surface precipitation and the moisture divergence are bal-
anced by the surface evaporation. The relationship pre-
sented in the model-calculated column-integrated budget
of heat is usually found in the radiation-induced convective
atmosphere rather than the strong summer convective at-
mosphere where the large-scale dynamic forcing plays the
most important role in destabilizing the atmosphere.
[13] Although there are large disagreements between the

model and the observations, it is interesting to see that the
model-calculated column net radiation, sensible heat flux,
and evaporation terms show rather high correlation (above
0.9) with the observations. This is mainly because these
processes are largely dominated by the strong solar diurnal
variations over the midlatitude land in the summer.
[14] The time-height distributions of the derived vertical

velocity (omega) and the total advective tendencies of
temperature and moisture from the variational analysis
are shown in Figures 3a–3c for the strong convective
period. Note that the total advection of temperature

Figure 3. Time-height distributions of the derived (a)
vertical velocity, (b) total advective tendency of tempera-
ture, and (c) total advective tendency of moisture during the
selected strong precipitation period in 1997 summer IOP.
Contour interval is 3. Contours >3 or less than �3 are
shaded. In Figures 3a–3c, solid lines denote contours �0,
and dotted lines denote contours <0.

Figure 4. Same as Figure 3 except for the ECMWF-
derived forcing fields.
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includes the adiabatic expansion term. Corresponding to the
observed surface precipitation events (Figure 2), the derived
forcings show strong large-scale advective cooling (associ-
ated with strong upward motion) in the middle and upper
troposphere and strong moisture convergence in the lower
troposphere.
[15] Figures 4a–4c are the same as Figures 3a–3c except

for the model-derived forcing fields. It is seen that the
model-derived forcing fields are closely associated with its
calculated precipitation. As we showed earlier, however, the
calculated precipitation events are much weaker than the
observations and also are triggered too early. Associated
with these problems, the model-derived forcing fields are
much weaker compared to those derived from the varia-
tional analysis. For some periods, such as on day 2, in
which a strong convective event was observed, the two
different forcings are even out of phase. On this day the
objectively analyzed data show very strong upward motion
and advective cooling in the middle and upper troposphere
and large lower-level moisture convergence, while the
ECMWF data displays weak downward motion and small
advective heating in the middle and upper troposphere and
weak lower-level moisture divergence.
[16] In summary, the above discussions show that the

forcing data derived from the ECMWF model differ
dramatically from those derived from the objective vari-
ational analysis method. The biases are closely reflected
in the errors of the model-simulated surface precipitation,
which partially relate to potential deficiencies in the
model parameterizations. In addition, the lack of suffi-
cient mesoscale observations available for the analysis of
the mesoscale structures, which are important for gener-
ating mesoscale convection, in the ECMWF data assim-
ilation system or deficiencies in the ECMWF data
assimilation itself may also contribute to the errors in
the ECMWF forcing data.

3.2. Spring Moderate Precipitation Case

[17] The spring precipitation period contained one single-
day precipitation on day 2 and one multiday precipitation
event on days 7–10 (solid line in Figure 5). In comparison
with the summer case the spring precipitation events were
relatively weaker and were mainly dominated by large-scale
frontal systems. It is seen that the ECMWF model is able to
generally capture well most of the precipitation events while
it underestimates the multiday precipitation event and
triggers the first precipitation event a little earlier (dotted
line in Figure 5).
[18] Table 2 is analogous to Table 1 but for the spring case.

In comparison with Table 1, much better agreement in the
column budget terms between the ECMWF simulations and
the observations is seen in the spring case. The temporal
correlations between the model data and the observations are
rather high (close to or larger than 0.9) for most of the budget
terms. Yet relatively weak correlations are seen in those
precipitation-related terms, such as the latent heating and
moisture convergence, where the correlation coefficients are
below 0.80. Both the model and the variational analysis
show moisture convergence and advective/adiabatic cooling
during these precipitation periods. The RMS errors in those
constraint terms are less than the magnitude of the temporal
variability in the observations. In terms of the mean value,
however, the model overestimates the observed column
radiative cooling and surface evaporation and underesti-
mates the surface precipitation and sensible heat flux. Dis-
crepancies in the mean diagnosed heat and moisture
convergences are also quite large.
[19] Figures 6a and 6b display the derived large-scale

vertical motions from the variational analysis and the

Figure 5. Same as Figure 2 except for the selected
moderate precipitation period in 2000 spring IOP.

Figure 6. Time-height distributions of the derived vertical
velocity from (a) variational analysis and (b) the ECMWF
model for the selected moderate precipitation period in 2000
spring IOP. Contour interval is 5. Contours >5 or less than
�5 are shaded. In these figures, solid lines denote contours
�0, and dotted lines denote contours <0.

Table 2. Same as Table 1 Except for the Spring Precipitation Case

MEAN STD RMSE RMSE/STDO CORR

RTOA�RSRF �87.7 (�71.5) 352.5 (423.5) 40.9 0.33 0.96
L(PREC) 64.0 (124.3) 131.9 (221.3) 156.7 0.71 0.77
SH 29.9 (40.3) 89.0 (76.6) 38.2 0.50 0.91
L(Es) 48.3 (30.9) 49.0 (36.3) 30.5 0.84 0.87
Cp(@hTi/@t) �21.9 (�24.5) 282.1 (263.9) 116.1 0.44 0.91
Col_Tadv �39.6 (�116.7) 352.5 (423.5) 204.3 0.48 0.90
L(@hqi/@t) 28.0 (3.1) 243.4 (177.1) 154.3 0.87 0.78
Col_qadv 54.5 (96.6) 272.4 (260.4) 222.9 0.86 0.66
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ECMWF model, respectively, for the spring case. The
model-derived vertical motions agree well overall with those
derived from the variational analysis. Larger disagreements
are seen on days 7 and 8 where the model produces weaker
upward motions and stronger downward motions. This is
clearly related to the model’s underestimation of the ob-
served precipitation that occurred on these days (see
Figure 5). Another noticeable feature in the figure is that
model upward/downward motions in the upper troposphere
are stronger than observed. This might be because the TOA
is set to 10 hPa in the ECMWF model while it is set to 100
hPa in the variational analysis. Therefore, omega in the
model is allowed to extend higher than that in the variational
analysis. Since there are no accurate measurements available
above 100 hPa, it is not possible to judge if the ECMWF
upper troposphere omega is more realistic. Similar results
can be seen in the derived temperature and moisture forcing
fields (not shown).

3.3. Fall Nonprecipitation Case

[20] Table 3 analyzes the statistics of the model-calculated
and observed column heat and moisture budget components
for the non-precipitation period of the fall 2000 IOP. As
expected, the disagreement between the ECMWFmodel data
and the observations is further reduced in the fall nonpreci-
pitation case. Most budget terms show RMS errors consid-
erably less than the observed temporal variations. The only
exception is the surface evaporation term, which shows
significantly large error in terms of RMSE/STDO. The
calculated column net radiative cooling agrees well with
the observation, with the mean bias <7% of the observed
value. The model-produced spurious precipitation is very
small (0.83 W m�2–0.03 mm d�1) and can be neglected.
[21] For the derived forcing fields, the EMWCF model

produces similar temporal variabilities in the heat and
moisture convergence terms as those in the variational
analysis data. The correlations for these two fields between
these two data sets are 0.94 and 0.88, respectively. Yet
discrepancies in the mean diagnosed heat and moisture
convergences are still noticeably large. Another noticeable
feature in Table 3 is that both the model and the variational
analysis show that the decrease in the heat storage is
balanced by the advective heating and column radiative
cooling, and the decrease in the moisture storage is balanced
by the moisture divergence and surface evaporation, in
absence of precipitation.
[22] Figures 7a and 7b are the same as Figures 6a and 6b

except for the nonprecipitation period. Both the observa-
tions and the model show that large-scale downward motion
dominates this nonprecipitation period. In general, the
model captures well the observed vertical velocity field

even though the downward motions are somewhat over-
estimated.

4. Single-Column Model Simulations

[23] In section 3 we discussed the large-scale forcing data
derived from the ECWMF model and from the objective
variational analysis for three selected cases. One important
question is whether or not a bias or model error can be
detected regardless of the forcing data set. To address this
question, the National Center for Atmospheric Research
(NCAR) Community Climate Model version 3 (CCM3)
SCM [Hack et al., 1998] with a modified cumulus convec-
tion scheme [Xie and Zhang, 2000] is used to investigate the
impact of the different large-scale forcings derived from the
ARM objective variational analysis and the ECMWF model
on SCM simulations. In the SCM runs the large-scale total
advective tendencies of temperature (including the adiabatic
expansion term) and moisture are specified from the two
different forcing data sets. The surface forcing is calculated
by the model surface parameterizations. Since CCM3 uses a
diagnostic cloud scheme, no initial cloud condition and
cloud forcing are required to drive the SCM. To prevent the
problem that SCM simulations could drift away from
observations over long time integration, a 36-hour forecast
of the SCM is launched every day. For each forecast the
temperature and moisture are initialized with the observa-
tions. The prognostic land variables used in the CCM3 land
surface model are initialized using climatological values if
there are no observations. A composite of 12- to 36-hour
forecasts from the series of 36-hour runs is analyzed. For the
convenience of discussion we use SCM-O to represent the
SCM run with the objective variational analysis forcing and
SCM-EC to represent the run with the ECMWF forcing in
the following discussions.

Table 3. Same as Table 1 Except for the Fall Nonprecipitation

Period

MEAN STD RMSE RMSE/STDO CORR

RTOA�RSRF �113.6 (�106.3) 65.4 (93.2) 35.8 0.38 0.96
L(PREC) 0.83 (0) 2.9 (0) 3.1 N/A N/A
SH 8.2 (12.5) 66.2 (68.8) 37.6 0.55 0.84
L(Es) 26.9 (14.8) 38.6 (18.3) 26.8 2.61 0.88
Cp(@hTi/@t) �32.6(�37.9) 256.7 (294.5) 104.8 0.36 0.94
Col_Tadv 71.6 (55.9) 224.7 (295.4) 117.9 0.40 0.93
L(@hqi/@t) �24.9(�16.7) 171.0 (131.2) 80.2 0.61 0.89
Col_qadv �51.1 (�31.7) 163.2 (126.5) 81.2 0.64 0.88

Figure 7. Same as Figure 6 except for the selected
nonprecipitation period in 2000 fall IOP. Contour interval
is 3.
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[24] Both runs generally produce much smaller simulation
errors (<6K in the temperature and <4 g kg�1 in themoisture)
than those found in other SCM studies (e.g., Ghan et al.,
2000; Xie et al., 2002) due to the short-range (36-hour) SCM
runs conducted in this study. However, the temporal corre-
lation between the simulation errors produced from the two
runs is rather weak or sometimes shows negative correlations
for the three cases (Figure 8). It is quite surprising that the
temperature errors produced in the two runs are less corre-
lated in the spring and fall cases than the summer case,
although the large-scale forcing data are less divergent during
the spring and fall periods, as shown before. It should be
noted that Figure 8 just gives the relationship between the
model errors produced from the two runs.
[25] Figures 9a and 9b show the simulated surface pre-

cipitation rates of the two runs during the summer and
spring periods, respectively. For the summer case, SCM-O
generally reproduces well the observed precipitation. In
contrast, SCM-EC largely underestimates the observed
precipitation. In fact, it regenerates well the ECMWF-
model-predicted precipitation. Its temporal correlation with
the ECMWF precipitation is much higher than that with the
observed precipitation (0.72 versus 0.21). This is also true
for the spring case where SCM-O is successful in reproduc-
ing the observed precipitation in both magnitude and phase
with the correlation around 0.95 while SCM-EC captures
well the ECMWF model precipitation with the correlation
around 0.94, which is much higher than its correlation with
the observations (0.70). Similar results can be found in other
simulated fields, such as the precipitable water, the cloud
liquid water, the TOA longwave and shortwave radiative
fluxes, and the surface sensible heat flux. For all these
fields, SCM-EC shows higher correlation with the
corresponding ECMWF simulations than the observations.
[26] Figure 10 shows the time series of the observed and

model-simulated precipitable water (PW) for the three
cases. The observed PW data are from the ARM microwave
radiometer measurements. The simulated PW results of the
two runs are in much better agreement with the observations
for the spring and fall cases than the summer case, where

SCM-EC produced atmosphere is too dry on days 3 and 4
and both runs show problems in correctly simulating the
observed PW temporal variations. In comparison with the
observations, SCM-O produces more realistic PW results
than SCM-EC for the summer case while both runs show
comparable results for the spring and fall cases. Neverthe-
less, noticeable differences are evident in the simulated PW
results between these two runs. Similar to the surface
precipitation rates, it is noted that SCM-EC has negative

Figure 8. Correlations as a function of height between the simulation errors produced by the SCM with
the different forcing data sets. (a) Temperature bias. (b) Moisture bias.

Figure 9. Time series of the observed (solid line),
ECMWF-produced (solid line with solid circles), and the
SCM-simulated surface precipitation rates (millimeters per
day). (a) Over the strong convective period in 1997 summer
IOP. (b) Over the moderate precipitation period in 2000
spring IOP. Dotted line is for using the ARM variational
forcing, and dotted line with open circles is for using the
ECMWF forcing.
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correlation (�0.35) with the observations while it shows
fairly high correlation (0.61) with the ECMWF simulated
PW (not shown) for the summer case.
[27] The above discussions demonstrate the sensitivity

nature of the SCM to the prescribed forcing data. This
highlights a problem when using the forcing derived from
NWP models to run SCMs. Because of uncertainties in the
NWP-derived forcing and the model sensitivity to these
uncertainties, it is difficulty to correctly interpret SCM
simulation results. Problems explored from such SCM tests
may not really reflect problems in the tested parameteriza-
tions. It may be just because the enforced NWP-derived
forcing does not correctly capture the large-scale dynamic
features in the observations due to impacts from imperfect
model parameterizations that are used to generate the forcing
data, such as during the strong summer convection periods.

5. Discussion of the Comparisons

[28] This study used the large-scale forcing data derived
from the ARM field measurements by the constrained

objective analysis method to assess those diagnosed from
the ECMWF model. One concern for this comparison is the
accuracy of the objective analysis forcing data. Because of
the inevitable error in the measurements, it is impossible to
obtain perfect forcing data in reality. However, sensitivity
tests of the analysis forcing data to uncertainties in the
original measurements and some arbitrary parameters used
in the variational analysis procedure can help to provide a
crude estimate of the accuracy limit in the derived large-
scale forcing fields.
[29] Three sets of sensitivity tests are conducted in this

study to assess the uncertainty in the variational analysis
forcing data using the summer 1997 IOP data. We first
examined the sensitivity of the forcing data to uncertainties
in the upper air input data. By perturbing the upper air input
data, we produced a set of 20 ensembles of forcing data sets
constrained with the same column budgets. The perturba-
tion errors added to horizontal winds, temperature, and
water vapor mixing ratio fields are randomly generated
and are bounded by an RMS error of 1.5 m s�1 for the
wind components, 0.5 K for the temperature, and 5% of the
locally observed water vapor mixing ratio for the moisture.
These numbers are close to the typical uncertainties in the
measurements. The standard deviations of the ensemble
mean of the forcing data can be considered as a rough
estimate of the uncertainty in the derived forcing data due
to errors in the upper air input data. The second test is to
examine how the derived forcing data are sensitive to
uncertainties in the domain-averaged surface precipitation
rates. Zhang et al. [2001] showed that the accuracy of the
domain-averaged precipitation had the largest impact on
derived forcing fields, compared to other constraints. So
results obtained from the second test can be considered as a
‘‘worst case scenario,’’ relative to those that could be
obtained due to uncertainties in other budget constraint
variables. In the current analysis the domain-averaged
precipitation is obtained from the Arkansan Basin Red
River Forecast Center (ABRFC) 4-km hourly WSR-88D
radar precipitation estimates. Over the ARM SCM domain,
surface precipitation data are also available from the surface
meteorological observational stations (SMOS) and the
Oklahoma and Kansas mesonet stations. The locations for
these measurement stations can be seen in the work of
Zhang et al. [2001, Figure 5a]. Figure 11 compares the

Figure 10. Time series of the observed and the SCM-
simulated precipitable water (mm) (a) Over the strong
convective period in 1997 summer IOP. (b) Over the
moderate precipitation period in 2000 spring IOP. (c) Over
the nonprecipitation period in 2000 fall IOP. Solid line is for
the observations. Dotted line is for using the ARM
variational forcing, and dashed line is for using the
ECMWF forcing.

Figure 11. Time series of the surface precipitation rates
(millimeters per day) from the Arkansan Basin Red River
Forecast Center radar measurements (solid line) and the
surface meteorological observational stations and Oklahoma
and Kansas mesonet measurements (dotted line).
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domain-averaged surface precipitation rates from the
ABRFC radar measurements (OBS0) and from the SMOS
and mesonet measurements (OBS1). Differences between
these two data are considered as a crude estimate of the
uncertainty in the observed surface precipitation field. The
third test is to examine the sensitivity of the derived forcing
data to the length scale parameters that need to be pre-
scribed in determining the weighting coefficients in the
interpolation technique used in the analysis procedure [see
Zhang et al., 2001, for details]. In this study, we changed
the length scale parameters (Lx, Ly, Lp, Lt) from current
values (50 km, 50 km, 50 hPa, 3 hours, respectively) to
(100 km, 100 km, 50 hPa, 6 hours, respectively). Again, the
current analysis results are used as the truth to assess results
from these sensitivity tests.
[30] Figures 12a–12c, respectively, show the maximum

standard deviations of the ensemble forcing data sets by
perturbing the upper-air input data (STD-ENSM), the RMS
errors caused by using the SMOS and surface mesonet
precipitation data (RMSE-PRE), the RMS errors from using
a larger length scale (RMSE-SCALE), and the RMS errors

from the ECMWF-derived forcing (RMSE-EC) in the
vertical velocity, the temperature forcing, and the moisture
forcing fields, during the selected period in the summer
1997 IOP. To judge these errors large or small, the standard
deviations of the current analysis forcing data (STD-OBS)
are also shown in these figures. It is seen that the range of
the uncertainties due to the imperfect input data (STD-
ENSM) is within 1 hPa h�1 for the omega field, 2 k d�1 for
the temperature forcing, and 1 g kg�1 d�1 for the moisture
forcing, for this summer case. The vertical distribution of
STD-ENSM shows larger errors in the middle and upper
troposphere for the temperature forcing and larger errors in
the lower troposphere for the moisture forcing. Consistent
with Zhang et al. [2001], smoother and weaker large-scale
forcing data fields are produced with using a larger length
scale. The difference in the derived forcing fields due to the
change in the length scale parameter (RMSE-SCALE) is
very close to the uncertainty in these forcing data due to the
imperfect upper air input data (STD-ENSM). The derived
forcing data from the objective analysis constrained by the
SMOS and mesonet precipitation show the RMS errors

Figure 12. Comparison of uncertainties in the large-scale forcing fields for the summer 1997 case.
(a) Vertical velocity. (b) Temperature forcing. (c) Moisture forcing. See text for description of standard
deviations of the current analysis forcing data (STD-OBS), upper-air input data (STD-ENSM), root-
mean-square error precipitation data (RMSE-PRE), RMS errors larger length scale (RMSE-SCALE), and
ECMWF-derived forcing (RMSE-EC).
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(RMSE-PRE) <3 hPa h�1 for the vertical velocity, 4 k d�1

for the temperature forcing, and 2 g kg�1 d�1 for the
moisture forcing, compared to those derived from the
current analysis that is constrained by the ABRFC radar
precipitation. It is noted that all these errors shown in the
sensitivity tests are significantly smaller than the ‘‘ob-
served’’ temporal variability of these forcing fields (STD-
OBS). In contrast, the ECMWF-derived forcing data exhibit
much larger RMS errors, which are generally comparable or
slightly larger than the observed standard deviations. The
exception is for the ECMWF-derived temperature forcing,
which shows dramatically large RMS error in the upper
troposphere.
[31] We note that these sensitivity tests just give a rough

estimate of the uncertainty in the objective analysis forcing
data. Other factors, such as the scale aliasings due to
insufficient sampling of measurements, the various interpo-
lation methods, the weighting coefficients used in the
variational cost function, and uncertainties in other con-
straint variables, can also affect the analysis results. More
complete characterization of the uncertainty in these derived
forcing fields requires further detailed studies in the future.
[32] Another concern for this comparison is that the

objective analysis derived large-scale forcing fields may
contain subgrid scale information. This concern can be
somewhat alleviated in this study because the variational
analysis approach is intended to dealias small-scale features
from the instantaneous soundings by using the domain-
averaged constraints to diagnose the desired large-scale
forcing fields. However, this approach cannot dealias data
in time and in the vertical direction. In the variational
analysis we have implemented vertical smoothing and time
filtering techniques to reduce impacts of the small-scale
noise on the derived large-scale forcing variables, which are
somewhat subjective.
[33] It is also noticed from Figure 1 that the ECMWF

domain is slightly larger than the variational domain. So one
cannot expect the domain-averaged forcing fields derived
from ECMWF to be exactly the same as those from the
variational analysis. However, the significant disagreements
between these two types of forcing data shown during the
convective period in this study cannot be easily explained
by the differences in the size of averaging domains. In fact,
an additional check for the ECMWF-diagnosed forcing data
averaged over a smaller domain shows very similar results.

6. Summary

[34] The large-scale forcing data set diagnosed from the
ECMWF model has been assessed under different weather
conditions using data collected at the ARM SGP site during
three IOPs. Over the strong convective period during the
summer 1997 IOP we have shown that the ECMWF-
diagnosed forcing fields are much weaker than those
derived from the ARM objective variational analysis. The
correlation between these two different forcing data sets is
very small. We have shown that the differences are closely
related to the errors in the ECMWF-model-predicted surface
precipitation. The errors in the model-predicted surface
latent and sensible heat fluxes and surface and TOA
radiative fluxes also reflect those in the diagnosed forcing
fields because they are the important components in the

column-integrated budgets of heat and moisture. Over the
moderate precipitation period during the spring 2000 IOP
and the nonprecipitation period during the fall 2000 IOP, the
disagreements between these two forcing data sets are
significantly smaller compared to those over the strong
summer convective period. The two forcing data sets
display high correlation, although differences between the
ECWMF diagnosed data and the variational analysis data
are still noticeable.
[35] Using the summer 1997 IOP data, the uncertainty in

the variational analysis forcing data has been briefly dis-
cussed by examining the sensitivity of the forcing to
uncertainties in the upper air input data, uncertainties in
the surface precipitation constraint, and uncertainties in
selecting length scale used in determining the weighting
coefficients in the analysis procedure. We have shown that
the uncertainty of the variational analysis forcing due to
these changes is much smaller than the RMS error shown in
the ECMWF-derived forcing, which is close to or larger
than the observed temporal variability. This is a serious
concern when using the ECMWF forcing to drive SCMs/
CSRMs.
[36] It has been shown that SCM simulations are sensitive

to differences in these two different forcing data sets. The
SCM simulation errors are not well correlated between
the SCM runs with the different forcing data sets for all
the three cases. The SCM with the ECMWF forcing tends to
reproduce some important aspects of the ECMWF-model-
simulated atmosphere (e.g., the surface precipitation rates
and the precipitable water), rather than aspects of the
observed atmosphere. This is a worrisome problem for
SCM tests because such test results may be misleading.
[37] It should be noted that SCMs and CSRMs have

stringent requirements for the large-scale forcing data. This
study shows that the forcing data diagnosed from ECWMF
model and the objective variational analysis are less diver-
gent over the periods that are dominated by large-scale
processes (e.g., the spring case and the fall case) than over
strong convective periods where there are considerably
large disagreements between the forcing data and therefore
the use of the ECMWF-model-derived forcing data should
be avoided. The ECMWF model nevertheless provides
unique long-term continuous data set, including compre-
hensive information about the dynamical and physical
fields, and there is no doubt that they are very useful for
evaluation and development of parameterizations in climate
models and understanding the structure of large-scale sys-
tems and budgets.
[38] To reduce the impact of model physical parameter-

izations on the NWP forcing data, we applied the variational
analysis method to the National Oceanic and Atmospheric
Administration mesoscale model Rapid Updated Cycle
(RUC) analysis with the ARM-observed column mass, heat,
moisture, and momentum constraints in a separate study. In
this approach the state variables from the RUC analysis are
adjusted to balance the new column budgets by using the
ARM surface and TOA observations rather than the RUC
model simulations. This is an important difference between
the forcing directly derived from RUC analysis and that
derived from the new approach. Preliminary results show
that this approach can significantly improve the quality of
the derived forcing data based on the RUC analysis. More
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detailed description about this study will be given in a
follow-up paper.
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